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A method is presented which allows reduction of exact wave functions of one electron 
diatomic molecules to "unique" orbitals from which exact wave functions for the particular 
molecule can be written as LCAO-MO functions. The method is illustrated with applications 
to the hydrogen molecule-ion and the doubly charged helium hydride molecule-ion. Extension 
of the method to two electron "unique" geminals is discussed. 

On pr6sente une m6thode qui permet la r6duction des fonctions d'onde exaetes de n'im- 
porte quelle mol6cule diatomique mono61ectronique aux orbitales <<uniques>>, sur base des- 
quels lee fonctions exactes des mol6cules s'6crivent en combinaisons lin6aires. La m6thode est 
illustr6e par les exemples de H~ et Hel l  ++. On discute son extension sur des g6minals <<uniques>> 
d'61ectrons. 

Ein Verfahren wird angegeben, aus exakten Eigenfunktionen zweiatomiger Molektile mit 
einem Elektron ,,unique" = einzigartige Orbitale zu gewinnen, aus denen sich die exakten 
Molekiilfunktionen als Linearkombinationen ergeben. Anwendungen auf I t  + und tteI-I++ er- 
l~utern die Methode. Die Erweiterung auf ,,unique"-Elektronengeminale wird diskutiert. 

Introduction 

One of the  most  commonly  used  me thods  of forming molecular  wave  funct ions  
is the  LCAO-MO (molecular  orb i ta l  fo rmed as a l inear  combina t ion  of  a tomic  
orbi tals)  method .  This m e t h o d  is ve ry  useful  concep tua l ly  in t h a t  i t  allows a 
phys ica l  significance t o  be a t t r i b u t e d  to  t he  funct ion  and  i ts  cons t i tuen t  a tomic  
orbi ta ls .  U n f o r t u n a t e l y  the  mos t  accura te  molecular  wave  funct ions  arc not  of  
this  form b u t  are usua l ly  compl ica ted  solut ions to  different ial  equat ions  [1, 2] or, 
arc in the  form of  power  series t imes  exponent ia l s  [4]. The  phys ica l  mean ing  of  
these  compl ica ted  wave  funct ions is no t  easy  to  visualize since t he  fami l ia r  
concept  of a tomic  orbi ta ls  is no t  appl icab le  to  them.  

I n  t he  following section a m e t h o d  is p resen ted  which allows the  reduc t ion  of 
exac t  wave  funct ions for one e lec t ron d ia tomic  molecules to  "unique" orbi ta ls  
f rom which exac t  wave  funct ions for the  pa r t i cu la r  molecule can be wr i t t en  as 
LCAO-MO funct ions.  

Appl ica t ions  are given to  the  hydrogen  molecule- ion and  the  doub ly  charged  
he l ium hydr ide  molecule- ion.  

Unique 0rbitals 
The set of "unique" orbi ta ls  for  a pa r t i cu la r  molecule  can be considered as 

consist ing of pairs  of orb i ta l s ;  one, Ta, centered  abou t  nucleus a, and  the  other ,  
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Ub, about nucleus b. The orbitals are to be constructed such that  the exact mole- 
cular wave function, ~P, may be written as 

U =  U~ + cU~ (1) 

where c is equal to _ i for the homonuclear case and none of the wave functions 
are necessarily normalized. 

There are an infinite number of ways by which one might form a set of orbitals 
that  would satisfy (l), but few that  would give the derived functions the proper- 
ties that  one would expect of an atomic orbital such as going to zero smoothly as 
the electron goes to infinity and "cusps" (i. e., point of discontinuity in the first 
derivative) appearing only at the nucleus about which the function is centered. 
Cusps can occur only for ~ orbitals since otherwise U -- 0 at each nucleus. 

A unique set of orbitals with the desired properties can be derived as follows. 
Consider the Hamiltonian operator, J/E, as being divided into two parts, T and V; 
T representing kinetic energy and V potential energy. Then for any eigenfunetion 
of the molecule, 

~ U = E U  

o r  

(T + V) u = E u (2) 

T U / U  = E -- V . 

For a one electron diatomic molecule, in atomic units. 

V - q~ qb 
f a  ?'b 

qa, qb = charges on nuclei a and b, respectively. 
As ra or rb goes to zero, -- V goes to infinity and because of this the exact mole- 
cular wave function has cusps at both nuclei. 

I t  is suggested that  a unique method of forming an orbital, Ua, centered about 
nucleus a would be to require that  (T  Ua/Ua) be finite as rb goes to zero and, for 
Ub require that  (T  Ub/Ub) be finite as ra goes to zero. Then Ua and Ub may have 
cusps at their respective nuclei but none at the other nucleus in either case and 
the orbitals will go to zero smoothly as either ra or rb approaches infinity. This 
condition on T U/U is more general than the condition for presence or absence of 
cusps. 

In the following illustrations of the method it is easier to discuss the homo- 
nuclear and heteronuclear cases separately. 

tIomonuclear case: Hydrogen molecule- ion 

Let U 1 and U~ be exact bonding and antibonding molecular orbitals, respect- 
ively, formed by the LCAO-M0 method from the "unique" orbitals Ua and Ub, 

u1 = cl (U~ + u0) 
u~ = ca (u~ - u s ) .  

Then, solving for Ua and Us 
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or, since the functions are not required to be normalized 

}Pb = }P1 - k }P2 (3) 

where, from above, k will be determined by requiring 

[ T }[Ja/}[Ia.]r~ = 0 = finite. (4) 

Since this is a homonuclear molecule, k is the same for both }Pa and }Pb. 
I t  seems logical tha t  the same rate of exponential fall off should be considered 

for both parts of a single atomic orbital. The rate of exponential fall off depends 
on both the exponential parameter  and the internuclear distance. 

For H2+ the lowest bonding state, Is at, and the lowest antibonding state, 
2p au, should occur with different exponential parameters [6], and the exponential 
parameter  for the lower state should be larger than tha t  for the upper state. This 
is easily seen from a consideration of the united atom or the asymptotic solution. 
I f  the exact: solution is assumed to be of the form [2] 

T .... F (ra, rb) exp [ - -~  (ra + r~)] (5) 

where F (ra, rb) goes to infinity much slower than exp [ + a (ra + rb)], the limiting 
behavior is determined by the exponential factor and the asymptotic  solution 
yields, in atomic units, 

E = - 2 ~ . (6) 

Since Els~g < E2p~, we have ~lso~ > cr and the upper state would trail off 
more slowly than the lower state if the same internuclear distance was considered 
for both wave functions. 

One method of assuring the same rate of exponential fall off for both functions 
is to use scaled coordinates. Let 

x ~  R~ = ~ R, etc., 

where x ~ is a scaled coordinate and ~ is a scaling parameter.  The scaled unique 
orbitals can be formed as 

= + k0  

= _ ko  ( 7 )  

where }po and }F ~ are eigenfunctions taken at corresponding scaled values of the 
internuclear distance. Tha t  is, ff R 1 is the actual internuclear distance of the lower 
state, the scaled values are 

RO = ~1 RI = ~2 R2 (8) 

where the most convenient ~ to use is the exponential parameter  in (5). 
In  scaled coordinates the Schroedinger equation becomes [5] 

(~2 To + ~ Vo) T ~ = E T ~ , 

or, if ~ is the exponential parameter  in (5) and (6), 

( t ) E T o  2 T  0 T o + ~ - V o  T O = ~ = -  , (9) 

where T o and Vo are in terms of scaled coordinates. 
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The unique  orbi ta ls  can be de t e rmined  b y  requi r ing  (T O o o T~/T~) be finite for 
r ~ = 0. Since T ~ and  T ~ are eigenfunetions for the  molecule,  

and  

1 ) o Ei o T ~ 1 7 6  T ~ =  ~ T i = - 2 T  ~ ; i = l , 2  

~o+ ~_~o 
- 2 -  V o (~o + ~o ~o) (i0) 

Since - V o goes to inf ini ty  a t  r~ 0 for (T o o o - T a / T c t  ) to r ema in  finite the  coefficient 
of Vo m u s t  go to  zero : therefore  if  the  denomina to r  is no t  zero the  n u m e r a t o r  goes 
to  zero and  

1 o ]c o ~i o ro = 

]co= _ (~ T0/~ To)~o=o 
or, f rom (8) 

]co = _ ( R 1  T ~  T~ (li) 

Equa t ions  (7) and  ( i l )  therefore  de te rmine  unique  orbi ta ls ,  a t  least  to wi th in  a 
no rmal i za t ion  cons tant .  

F o r  a molecular  o rb i ta l  o ther  t h a n  a there  is a node along the  molecular  axis 
and  the  denomina to r  in (10) is zero. I n  the  wave  funct ions  used below the  node 
arises f rom a fac tor  

[(~- i ) ( l  -~t~)]ml 2 

where m = 0, i ,  2 . . . .  for a, ~, d . . .  
The molecular  o rb i ta l  w i thou t  th is  fac tor  has  cusps at  the  nuclei.  This fac tor  
cancels out  be tween n u m e r a t o r  and  denomina to r  in equ. (i0) and  the  resul t ing  
equa t ion  ( l i )  can then  a p p l y  to  the  fac to red  funct ion wi th  cusps. 

No te  t h a t  if  we h a d  no t  de t e rmined  the  sealing pa rame te r s  f rom (6) and  
ins tead  had  used unsea led  funct ions  a t  the  same in te rnuc lear  d is tance  (~1 -- ~2, 
R 1 = R2), equat ions  (7) and  ( l i )  force T a  to  have  a node at  nucleus b. There  is no 
a pr ior i  reason to  expec t  an orb i ta l  cen te red  abou t  nucleus a to  have  a node a t  
nucleus b and  this  can be considered fur ther  jus t i f ica t ion for the  use of  scaled 
coordinates .  

F o r  these  orb i ta l s  to be considered a unique set there  should be an unambiguous  
m e t h o d  of choosing the  p roper  wave  funct ions  to  combine.  Fo r  the  hydrogen  
molecule- ion this  choice can be made  th rough  the  use of  a correla t ion d i ag ram 
be tween  s ta tes  of the  un i t ed  a t o m  and  s ta tes  of the  s epa ra t ed  a toms  [3]. The mole- 
cular  wave  funct ions  were chosen in pairs  of bonding  and  antiboncling funct ions  
such t h a t  bo th  h a d  the  same ro t a t i ona l  s y m m e t r y  and  bo th  corresponded to the  
same s ta te  of  the  s epa ra t ed  a toms.  This le~ds to  the  following combina t ions  : 

ns aa wi th  (n + l )  p a , ,  

14" 
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Table I 

Molecule 

H~+ 

Hell++ 

Function 

1sag 

2p a~ 
2s as 
3p a~ 
3s aa 
4p a~ 
2p ~ 
3d ~g 

3d as 
4/a~ 
l s a  
2p a 

R 

2.0 
2.52344 
3.89081 
4.26254 
5.68954 
5.99355 
3.45542 
4.37074 
3.93996 
5.56951 
2.0 
2.89884 

1.48501 

2.24151 

0.34679 
0.69927 
t.62006 
1.87038 
2.83131 
3.03603 
0.32687 
0.94324 
t.653t5 
2.75049 
0.33838 
0.93988 

0.74251 
0.58849 
0.38167 
0.34839 
0.26101 
0.24777 
0.42976 
0.33976 
0.37691 
0.26663 
IA2076 
0.77324 

np  7Cu with (n + 1) d ~g,  
and 

nd ag with (n + t) / au �9 

The wave funct ions used were obta ined through interpola t ion in  the tables 
given by  BATES, LEDS~A~, and  STEWART [2] and  the basic parameters  and  scale 
factors are given in Tab.  i .  The parameters  given refer to a wavefunct ion of the 
form 

T (L #, ~) = A (A) M (#) ~b (~) 
whore 

and 

__ ra + ro ra -- rb 

R ' / ~ - -  R 
= - -  , ~ = azimuthal  angle; 

COS @) = ~ (m ~) 

A (~) = (~2 _ l)m/2 (A + i)~ exp ( - p A) t=0 ~ gt \ ~ ( ~ 1  

M (/~) = ~ /s P m . m+s (~) (12) 
s 

The coefficients gt and f8 are too numerous to tabulate  here bu t  are easily obtained 
through interpolation in the tables given in [2] using the basic parameters  given 
in Tab. 1. 

Five sets of  unique orbitals for H + were determined and the constants are 
given in Tab. 2. To illustrate the shapes of  the unique orbitals, Fig. I presents a 

Table 2 

Molecule Functions k o kOe 
combined 

HeH++ 

is ag, 2p a,~ 
2s ag, 3p a~ 
3s as, 4p a~ 
2p z~, 3d ~g 
3d ag, 4 /a~  
i s  a, 2p a 

0.72692 
0.89710 
0.96580 
0.18378 
0.30355 
8.4710 0.41605 



Unique Orbi~als 179 

I \ 
. . . .  

I / i  ~, . / / ;  ',, 

a" 

I I \\ 

, / f ? #  _\ 
\ 
\ 
\ /" 

\ iiii 
~d 

Fig. 1.5Iolecular Wavefunctions and Unique Orbital for Itp+, plotted along the molecular axis 

plot  of  the  unique orb i ta l  T o der ived  f rom the  i s  ag and  2pgu s ta tes .  The funct ions  
are p lo t t ed  along the  molecular  axis versus the  dimensionless  p a r a m e t e r  ~ ~ 2 zlR. 
Fig.  2 shows the  same funct ions p lo t t ed  perpendicu la r  to  the  molecular  axis a t  
nucleus b versus Q = 2 xlR. 
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Fig. 2. ~r Wavefunctions and Unique Orbital for g~+, plotted perpendicular to the molecular axis 

tteteronuclear ease: IIelium Hydride molecule.ion 

F o r  a he te ronuc lear  molecule T~ and  T ~ will, of  course, no t  be symmet r i ca l ly  
r e l a t ed  as t h e y  are  for the  homonuclear  case. The sealed unique  orbi ta ls  can be 
wr i t t en  as 

T~ = ~ o  + ko T o (~3) 

and  the  exac t  molecular  funct ions  as (unnormalized)  

~o ~ o  

T 0 T o -  T~ 
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:From (lO) and (t~) then, 

- -  ~ o \ R2 T2]rb = 0 

\ = o " 

( 1 4 )  

The heteronuclear diatomic molecule has the same types of possible states as 
the homonuclear diatomic except tha t  the g or u property has been lost. Therefore 
the choice of states to combine corresponds to the homonuclear case : 

us a with (n + 1) p a, 

np z with (n § t) d 7~, 
and 

nga  with (n + l) f a .  

Exact  wave functions are available for fewer states of t telt++ than for I-I +. Uni- 
que orbitals were determined for the is  a and 2p a states utilizing data from the 
t~bles of BAT~S and CARSO~ [1]. The basic parameters for these wave functions 
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Fig. 3. 25olecular Wavefunctions and Unique Orbital for }tel~-b ~-, plotted along the molecular axis. The (2pa) ~ 
function is increased by  a factor of 10 

and the unique orbitals are given in Tab. i and 2. The functions of BAT~S and 
C~_I~SON are the same as (12) except for M (#) and, for the range of internuclear 
distances considered, it is given by 

M (/~) = exp ( - - p # )  ~. /~ P~ (#) . (15) 

The expansion coefficients are readily obtained from the tables given in [1] by 
interpolation using the basic parameters in Tab. I. 

In  :Fig. 3 the molecular wave functions, ~rf~e , and ~]~ are plotted Mong the 
molecular axis versus ~ = 2 z/N. 

Unique Geminals 
For a diatomic molecule, a set of two electron "unique" geminals analogous 

to the set of "unique" orbitals would be composed of quartets of geminals. The 
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geminals in a specific quar te t  would be labeled Tab, Tba, Taa, and Tb~ where 
~Y~ refers to a geminal with electron t a round nucleus ~ and electron 2 around 

nucleus ft. 
For  the two electron diatomie molecule, in atomic units, 

V -  q~ ff~ q~ qb + i 
r a l  r b l  ra2  rb2 r12 

and V becomes infinite if any  of  the interpartic]e coordinates goes to zero. I n  
analogy to the one electron case it is suggested tha t  the geminals be formed 
through  the requirement  tha t  (T T~Z/~P~) be finite for each of  the following 
functions and its accompanying  conditions. 

For  Tab if rbl or ra2 = 0 
T~a if ral or rb2 = 0 
Taa if rbl or rb2 = 0 
Tbb if ral or ra~ = 0 �9 

As an example, the four lowest states of  the hydrogen molecule could be repre- 

1 ~  (ground) = cl (Ta~ + Tva) + c2 (Taa + Tbb) 

1X+ (excited) = c5 (Taa + T~b) -- c 6 (Tab + Tba) �9 

sented as 

Unfortunately ,  sufficiently accurate wavefunet ions for the excited states of 
the hydrogen molecule have not  been determined over the ranges of exponential  
parameters  and internuclear distances tha t  would be required to determine a set 
of  unique geminals for this molecule. 

Conclusion 
I t  has been shown tha t  exact wavefunctions for one electron diatomic mole- 

cules can be reduced to a set of "unique" orbitals centered on the two nuclei such 
t h a t  the exact  wavefunctions are expressible as LCAO-M0 functions of  these 
orbitals. The derived functions have the properties t ha t  one normal ly  expects to  
find in an atomic orbital in tha t  there are cusps only at the nucleus about  which 
the orbital is centered, the orbitals are continuous, and they  go smoothly  to zero 
as the electron goes to infinity. 

The extension to "unique" geminals is discussed, but  applications cannot  be 
shown at this t ime due to a lack of  sufficiently accurate wave functions for the 
range of  internuclear distances tha t  would be required. 
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