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A method is presented which allows reduction of exact wave functions of one electron
diatomic molecules to “unique’ orbitals from which exact wave functions for the particular
molecule can be written as LCAO-MO functions. The method is illustrated with applications
to the hydrogen molecule-ion and the doubly charged helium hydride molecule-ion. Extension
of the method to two electron “unigue” geminals is discussed.

On présente une méthode qui permet la réduction des fonctions d’onde exactes de n’im-
porte quelle molécule diatomique monoélectronique aux orbitales «unigues», sur base des-
quels les fonctions exactes des molécules s’éerivent en combinaisons linéaires. La méthode est
illustrée par les exemples de H} et HeHtt, On discute son extension sur des géminals «unigues»
d’électrons.

Ein Verfahren wird angegeben, aus exakten Eigenfunktionen zweiatomiger Molekiile mit
einem Rlektron , unique”’ = einzigartige Orbitale zu gewinnen, aus denen sich die exakten
Molekiilfunktionen als Linearkombinationen ergeben. Anwendungen auf H§ und HeH* er-
lsutern die Methode. Die Erweiterung auf  unique’-Elektronengeminale wird diskutiert.

Introduction v

One of the most commonly used methods of forming molecular wave functions
is the LCAO-MO (molecular orbital formed as a linear combination of atomic
orbitals) method. This method. is very useful conceptually in that it allows a
physical significance to be attributed to the function and its constituent atomic
orbitals. Unfortunately the most accurate molecular wave functions are not of
this form but are usually complicated solutions to differential equations [1, 2] or,
are in the form of power series times exponentials {4]. The physical meaning of
these complicated wave functions is not easy to visualize since the familiar
concept of atomic orbitals is not applicable to them.

In the following section a method is presented which allows the reduction of
exact wave functions for one electron diatomic molecules to “unique’’ orbitals
from which exact wave functions for the particular molecule can be written as
LCAO-MO functions.

Applications are given to the hydrogen molecule-ion and the doubly charged
helinm hydride molecule-ion.

Unique Orbitals
The set of “unique’’ orbitals for a particular molecule can be considered as
consisting of pairs of orbitals; one, ¥y, centered about nucleus a, and the other,
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¥, about nucleus b. The orbitals are to be constructed such that the exact mole-
cular wave function, ¥, may be written as

V=%, +c¥, (1)

where ¢ is equal to + 1 for the homonuclear case and none of the wave functions
are necessarily normalized.

There are an infinite number of ways by which one might form a set of orbitals
that would satisfy (1), but few that would. give the derived functions the proper-
ties that one would expect of an atomic orbital such as going to zero smoothly as
the electron goes to infinity and “cusps’ (i. e., point of discontinuity in the first
derivative) appearing only at the nucleus about which the function is centered.
Cusps can occur only for ¢ orbitals since otherwise ¥ == 0 at each nucleus.

A unique set of orbitals with the desired properties can be derived as follows.
Consider the Hamiltonian operator, 3, as being divided into two parts, 7' and V;
T representing kinetic energy and V potential energy. Then for any eigenfunction
of the molecule,

Y =FEF
T+ VVV=EW¥ (2)
or :
TPV =E—-V .
For a one electron diatomic molecule, in atomic units.
Ve 42 &
ta v

94, 9p = charges on nuclei a and b, respectively.
As rq or 7, goes to zero, —V goes to infinity and because of this the exact mole-
cular wave function has cusps at both nuclei.

It is suggested that a unique method of forming an orbital, ¥,, centered about
nucleus @ would be to require that (7' ¥,/%,) be finite as 7, goes to zero and, for
Wy require that (T ¥y/¥%) be finite as r, goes to zero. Then ¥, and ¥, may have
cusps at their respective nuclei but none at the other nucleus in either case and
the orbitals will go to zero smoothly as either 7, or 7, approaches infinity. This
condition on 7' P/¥ is more general than the condition for presence or absence of
cusps.

In the following illustrations of the method it is easier to discuss the homo-
nuclear and heteronuclear cases separately.

Homonueclear case: Hydrogen molecule-ion
Let ¥, and ¥, be exact bonding and antibonding molecular orbitals, respect-
ively, formed by the LCAO-MO method from the “unique” orbitals ¥, and ¥,
Y, = ¢, (Wy + Pp)
T2 == Oy (Ta — Tb) .
Then, solving for ¥, and ¥,

1 1
Ta: 2—(11971 + 2_972

Cy
1 1
sz 2—01?1 — 2-(3‘2?2
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or, since the functions are not required to be normalized

VYo=Y, + kY,

V=Y, — k¥, (3)
where, from above, k will be determined by requiring

[T Wa/Palr, = o == finite . 4)

Since this is a homonuclear molecule, % is the same for both ¥, and ¥5.

It seems logical that the same rate of exponential fall off should be considered
for both parts of a single atomic orbital. The rate of exponential fall off depends
on both the exponential parameter and the internuclear distance.

For H,* the lowest bonding state, 1s o, and the lowest antibonding state,
2p oy, should occur with different exponential parameters [6], and the exponential
parameter for the lower state should be larger than that for the upper state. This
is easily seen from a consideration of the united atom or the asymptotic solution.
If the exact solution is assumed to be of the form [2]

¥ = F (ra, rp) exp [~ (ra + 13)] ©)

where F (r,, rp) goes to infinity much slower than exp [+ « (ry + 75)], the limiting
behavior is determined by the exponential factor and the asymptotic.solution
yields, in atomic units,
E=—2x%. (6)
Since Hs, < Baps, We have éclsgg > naps, and the upper state would trail off
more slowly than the lower state if the same internuclear distance was considered
for both wave functions.
One method of assuring the same rate of exponential fall off for both functions
is to use scaled coordinates. Let
=z, R°={R,etc.,
where z0 is a scaled coordinate and { is a scaling parameter. The scaled unique
orbitals can be formed as
Y=+ w3
PI=Y! Y (7)
where ¥ and P} are eigenfunctions taken at corresponding scaled values of the
internuclear distance. That is, if R, is the actual internuclear distance of the lower

state, the scaled values are
RO = Cl Rl = CZ R2 (8)

where the most convenient { to use is the exponential parameter in (5).
In scaled coordinates the Schroedinger equation becomes [5]

BT+ V) WO =EY,
or, if ¢ is the exponential parameter in (5) and (6),
(10 + 7)o = e = — 2w, )

where T, and V, are in terms of scaled coordinates.
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The unique orbitals can be determined by requiring (7, W/¥?) be finite for
) = 0. Since ¥ and ¥} are eigenfunctions for the molecule,

<T0+—%VO>¥[’2: Bowi_ _owy; -1

and

1 1
TO'PO -2W2~T1‘V0'P2+k0<—2¥’0—E‘V(}Y’g>

v P+ kY
1

1
( EP2+7<;°—SU2>
:__2_'[/ 51 52
0 (3 + 0Py

(10)

Since — ¥, goes to infinity at 7, = 0 for (7 ¥ ,/¥ ;) to remain finite the coefficient
of V, must go to zero: therefore if the denominator is not zero the numerator goes
to zero and
_L 0 0 L 0 —
<1 itk C2T2>rb=0—0
ko= — (52 Tg/é} ng)rb0=0
or, from (8)
b = — (By Vi By ¥ i)rymo - (11)

Equations (7) and (11) therefore determine unique orbitals, at least to within a
normalization constant.

For a molecular orbital other than ¢ there is a node along the molecular axis
and the denominator in (10) is zero. In the wave functions used below the node

arises from a factor
[32 — 1) (1 — e

where m = 0,1,2, ... foro, 7,6 ...

The molecular orbital without this factor has cusps at the nuclei. This factor
cancels out between numerator and denominator in equ. (10) and the resulting
equation (11) can then apply to the factored function with cusps.

Note that if we had not determined the scaling parameters from (6) and
instead had used unscaled functions at the same internuclear distance ({; = ,,
R, = R,), equations (7) and (11) force ¥, to have a node at nucleus b. There is no
a priori reason to expect an orbital centered about nucleus @ to have a node at
nucleus b and this can be considered further justification for the use of scaled
coordinates.

For these orbitals to be considered a unique set there should be an unambiguous
method of choosing the proper wave functions to combine. For the hydrogen
molecule-ion this choice can be made through the use of a correlation diagram
between states of the united atom and states of the separated atoms [3]. The mole-
cular wave functions were chosen in pairs of bonding and antibonding functions
such that both had the same rotational symmetry and both corresponded to the
same state of the separated atoms. This leads to the following combinations:

ns og with (n + 1) p oy ,
14%*
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Table 1
Molecule Function R P o m ¢
H,*+ 1s og 2.0 1.48501 0.34679 0 0.74251
2p 0u 2.52344 » 0.69927 0 0.58849
2s 04 3.89081 » 1.62006 0 0.38167
3p ou 4.26254 » 1.87038 0 0.34839
3s 0y 5.68954 » 2.83131 0 0.26101
4p ou 5.99355 » 3.03603 0 0.24777
2P 7ty 3.45542 . 0.32687 1 0.42976
3d ny 4.37074 ' 0.94324 1 0.33976
3d oy 3.93996 » 1.65315 0 0.37691
4f ou 5.56951 » 2.75049 0 0.26663
HeH*+ 1so 2.0 2.24151 0.33838 0 1.12076
200 2.89884 » 0.93988 0 0.77324

np 7wy With (v 4+ 1) dmy
and :
nd og with (n 4+ 1) f oy, .

The wave functions used were obtained through interpolation in the tables
given by Bares, LEpsaAaM, and STEwART [2] and the basic parameters and scale
factors are given in Tab. 1. The parameters given refer to a wavefunction of the
form

Ap, @) =A0) M () D (p)

where
41— Ta; LI :f%” , » = azimuthal angle;
and
D (p) = ;O; (m @)
A7) = (22— 1ym/2 (1 4 1) exp (— p4) 2, g (H) t
M () =D fo Pl ) 12

The coefficients g; and {5 are too numerous to tabulate here but are easily obtained
through interpolation in the tables given in [2] using the basic parameters given
in Tab. 1.

Five sets of unique orbitals for Hf were determined and the constants are
given in Tab. 2. To illustrate the shapes of the unique orbitals, Fig. 1 presents a

Table 2
Functions 0 0
Molecule combined kY kY

HE 1sog, 2pou 0.72692

28 Gy, 3P Ou 0.89710

350y, 4pou 0.96580

2p 724, 3 77 0.18378

3d a4, 4f 0u 0.30355
HeH*++ 1so, 2po 8.4710 0.41605
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Fig. 1. Molecular Wavefunctions and Unjque Orbital for H,+, plotted along the molecular axis

plot of the unique orbital ¥'9 derived from the 1s ¢y and 2po,, states. The functions
are plotted along the molecular axis versus the dimensionless parameter g == 2 2/ R.
Fig. 2 shows the same functions plotted perpendicular to the molecular axis at
nucleus b versus g = 2 z/E.
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Fig. 2. Molecular Wavefunctions and Unique Orbital for H,+, plotted perpendicular to the molecular axis

Heteronuclear case: Helium Hydride molecule-ion
For a heteronuclear molecule ¥9 and ¥} will, of course, not be symmetrically

related as they are for the homonuclear case. The scaled unique orbitals can be
written as

Po=¥i+tka¥3 (13)

WPy Wy
and the exact molecular functions as (unnormalized)

ka

Pi="Yo+ w e

s =i-v.
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From (10) and (11) then,

o (B

@ R, Pl =0 1
o (B (14)
® AR, WY -0 "

The heteronuclear diatomic molecule has the same types of possible states as
the homonuclear diatomic except that the ¢ or u property has been lost. Therefore
the choice of states to combine corresponds to the homonuclear case:

ns ¢ with (n + 1) p o,

np g with (n 4 1) d x,
and
nd o with (n + 1) fo .

Exact wave functions are available for fewer states of HeH++ than for Hy . Uni-
que orbitals were determined for the 1s o and 2p o states utilizing data from the
tables of Bares and Carsox [1]. The basic parameters for these wave functions

o

——m(50)°

Fig. 3. Molecular Wavefunctions and Unique Orbital for HeH+ t+, plotted along the molecular axis. The (2p0)°
- function is increased by a factor of 10

and the unique orbitals are given in Tab. 1 and 2. The functions of Batss and
CarsoN are the same as (12) except for M (u) and, for the range of internuclear
distances considered, it is given by

M () = exp (—pp) 3£, PP (1) - (15)

The expansion coefficients are readily obtained from the tables given in [I] by
interpolation using the basic parameters in Tab. 1.

In Fig. 3 the molecular wave functions, ¥4, and ¥§ are plotted along the
molecular axis versus p = 2 z/R.

Unique Geminals
For a diatomic molecule, a set of two electron “unique’” geminals analogous
to the set of “unique” orbitals would be composed of quartets of geminals. The
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geminals in a specific quartet would be labeled ¥up, Yon, Waa, and Pry where
Y ,p refers to a geminal with electron 1 around nucleus « and electron 2 around
nucleus 5.

For the two electron diatomic molecule, in atomic units,

and ¥V becomes infinite if any of the interparticle coordinates goes to zero. In
analogy to the one electron case it is suggested that the geminals be formed
through the requirement that (7' ¥,5/¥,s) be finite for each of the following
funections and its accompanying conditions.

For Wyp if rp, or 74 = 0
Wpa if 745 00 755 = 0
Yo if 1y, or 755 = 0
Wppif rgy or rgy =0 .

As an example, the four lowest states of the hydrogen molecule could be repre-
sented as

12; (ground) =0 (War + Yoa) + Cy (Wao + Pon)
X = 3 (Par — Pra)

) ; = ¢ (Paa — Vo)

12;— (excited) = ¢; (Waa + Pob) — ¢ (Par + VPra) -

Unfortunately, sufficiently accurate wavefunctions for the excited states of
the hydrogen molecule have not been determined over the ranges of exponential
parameters and internuclear distances that would be required to determine a set
of unique geminals for this molecule.

Conclusion

It has been shown that exact wavefunctions for one electron diatomic mole-
cules can be reduced to a set of “unique” orbitals centered on the two nuclei such
that the exact wavefunctions are expressible as LCAO-MO functions of these
orbitals. The derived functions have the properties that one normally expects to
find in an atomic orbital in that there are cusps only at the nucleus about which
the orbital is centered, the orbitals are continuous, and they go smoothly to zero
as the electron goes to infinity.

The extension to “unique” geminals is discussed, but applications cannot be
shown at this time due to a lack of sufficiently accurate wave functions for the
range of internuclear distances that would be required.
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